6,137 research outputs found

    Monte Carlo simulation of baryon and lepton number violating processes at high energies

    Get PDF
    We report results obtained with the first complete event generator for electroweak baryon and lepton number violating interactions at supercolliders. We find that baryon number violation would be very difficult to establish, but lepton number violation can be seen provided at least a few hundred L violating events are available with good electron or muon identification in the energy range 10 GeV to 1 TeV.Comment: 40 Pages uuencoded LaTeX (20 PostScript figures included), Cavendish-HEP-93/6, CERN-TH.7090/9

    Effects of invisible particle emission on global inclusive variables at hadron colliders

    Full text link
    We examine the effects of invisible particle emission in conjunction with QCD initial state radiation (ISR) on quantities designed to probe the mass scale of new physics at hadron colliders, which involve longitudinal as well as transverse final-state momenta. This is an extension of our previous treatment, arXiv:0903.2013, of the effects of ISR on global inclusive variables. We present resummed results on the visible invariant mass distribution and compare them to parton-level Monte Carlo results for top quark and gluino pair-production at the LHC. There is good agreement as long as the visible pseudorapidity interval is large enough (eta ~ 3). The effect of invisible particle emission is small in the case of top pair production but substantial for gluino pair production. This is due mainly to the larger mass of the intermediate particles in gluino decay (squarks rather than W-bosons). We also show Monte Carlo modelling of the effects of hadronization and the underlying event. The effect of the underlying event is large but may be approximately universal.Comment: 22 pages, expanded sections and other minor modifications. Version published in JHE

    The Modified Weighted Slab Technique: Models and Results

    Get PDF
    In an attempt to understand the source and propagation of galactic cosmic rays we have employed the Modified Weighted Slab technique along with recent values of the relevant cross sections to compute primary to secondary ratios including B/C and Sub-Fe/Fe for different galactic propagation models. The models that we have considered are the disk-halo diffusion model, the dynamical halo wind model, the turbulent diffusion model and a model with minimal reacceleration. The modified weighted slab technique will be briefly discussed and a more detailed description of the models will be given. We will also discuss the impact that the various models have on the problem of anisotropy at high energy and discuss what properties of a particular model bear on this issue.Comment: LaTeX - AASTEX format, Submitted to ApJ, 8 figures, 20 page

    Observations of galactic cosmic ray energy spectra between 1 and 9 AU

    Get PDF
    The variation of the 5 to 500 MeV/nuc cosmic ray helium component was studied between 1 and 9 A.U. using essentially identical detector systems on Pioneer 10 and 11 and Helios I. Between 100 and 200 MeV/nuc a radial gradient of 3.3?1.3%/A.U. is found. At 15 MeV/nuc this value increases to 20?4%/A.U. Between 4 and 9 A.U. a well defined intensity maximum is observed at approximately 17 MeV/nuc. The average adiabatic energy loss between 1 and 9 A.U. is approximately 4 MeV/nuc/A.U. The observed radial variation between 1 and 9 A.U. is well described by the Gleeson-Axford force field solution of the modulation equations over an energy range extending from 15 to 500 MeV/nuc and is in good agreement with the results reported by other Pioneer experiments. These values are much smaller than had been theoretically predicted

    Signatures of four-particle correlations associated with exciton-carrier interactions in coherent spectroscopy on bulk GaAs

    Get PDF
    Transient four-wave mixing studies of bulk GaAs under conditions of broad bandwidth excitation of primarily interband transitions have enabled four-particle correlations tied to degenerate (exciton-exciton) and nondegenerate (exciton-carrier) interactions to be studied. Real two-dimensional Fourier-transform spectroscopy (2DFTS) spectra reveal a complex response at the heavy-hole exciton emission energy that varies with the absorption energy, ranging from dispersive on the diagonal, through absorptive for low-energy interband transitions to dispersive with the opposite sign for interband transitions high above band gap. Simulations using a multilevel model augmented by many-body effects provide excellent agreement with the 2DFTS experiments and indicate that excitation-induced dephasing (EID) and excitation-induced shift (EIS) affect degenerate and nondegenerate interactions equivalently, with stronger exciton-carrier coupling relative to exciton-exciton coupling by approximately an order of magnitude. These simulations also indicate that EID effects are three times stronger than EIS in contributing to the coherent response of the semiconductor

    Fine and ultrafine particle number and size measurements from industrial combustion processes : primary emissions field data

    Get PDF
    This study is to our knowledge the first to present the results of on-line measurements of residual nanoparticle numbers downstream of the flue gas treatment systems of a wide variety of medium- and large-scale industrial installations. Where available, a semi-quantitative elemental composition of the sampled particles is carried out using a Scanning Electron Microscope coupled with an Energy Dispersive Spectrometer (SEM-EDS). The semi-quantitative elemental composition as a function of the particle size is presented. EU's Best Available Technology documents (BAT) show removal efficiencies of Electrostatic Precipitator (ESP) and bag filter dedusting systems exceeding 99% when expressed in terms of weight. Their efficiency decreases slightly for particles smaller than 1 mu m but when expressed in terms of weight, still exceeds 99% for bag filters and 96% for ESP. This study reveals that in terms of particle numbers, residual nanoparticles (NP) leaving the dedusting systems dominate by several orders of magnitude. In terms of weight, all installations respect their emission limit values and the contribution of NP to weight concentrations is negligible, despite their dominance in terms of numbers. Current World Health Organisation regulations are expressed in terms of PM2.5 wt concentrations and therefore do not reflect the presence or absence of a high number of NP. This study suggests that research is needed on possible additional guidelines related to NP given their possible toxicity and high potential to easily enter the blood stream when inhaled by humans

    Disorder induced Dirac-point physics in epitaxial graphene from temperature-dependent magneto-transport measurements

    Get PDF
    We report a study of disorder effects on epitaxial graphene in the vicinity of the Dirac point by magneto-transport. Hall effect measurements show that the carrier density increases quadratically with temperature, in good agreement with theoretical predictions which take into account intrinsic thermal excitation combined with electron-hole puddles induced by charged impurities. We deduce disorder strengths in the range 10.2 ∼\sim 31.2 meV, depending on the sample treatment. We investigate the scattering mechanisms and estimate the impurity density to be 3.0∼9.1×10103.0 \sim 9.1 \times 10^{10} cm−2^{-2} for our samples. An asymmetry in the electron/hole scattering is observed and is consistent with theoretical calculations for graphene on SiC substrates. We also show that the minimum conductivity increases with increasing disorder potential, in good agreement with quantum-mechanical numerical calculations.Comment: 6 pages, 3 figure
    • …
    corecore